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Motivation

0 Safety-critical networked systems require real-time communication
U Time-Sensitive Networking (TSN) supports hard latency and deadline guarantees in wired
Ethernet networks
O Many novel applications benefit from wireless connectivity [1], e.g.:
O Automated Guided Vehicles
O Exo-skeleton
O Smart farming

O Reliable end-to-end scheduling i Control loop closed over network :
with wireless network elements
. —
required I . Wired Edge Cloud
‘ TSN Bridge ' TSN Network Servers

Talkers /
Listeners

1. DETERMINISTIC6G Deliverable 1.1 “Use Cases and Architecture Principles”




5G Standard Support for TSN

Standardized: 5G support for TSN (and for DetNet similarly)

Q
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The 5G System represented as a Virtual (Wireless) TSN bridge in the end-to-end TSN view

O External behavior (functionality) same for wired and wireless bridges

O Including in particular gates and Gate-Control List (time table) for scheduled traffic (IEEE 802.1Qbv)

Upper-bound latency via ultra-reliable and low latency (URLLC) communication

Core Control Plane
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Port-to-Port Delay:
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Wired TSN Bridge vs. 5G Virtual TSN Bridge

Port-to-Port Delay:
0 Delay from ingress to egress port

O Without transmission selection
O No queuing in egress queue (gates open)

Port-to-Port Delay Characteristics of Virtual Bridge:

O  Greater than for wired TSN bridges
O But support for upper bound provided by URLLC

O Stochastic
O Heavy-tailed

frequency

Core Control Plane
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Port-to-Port Delay:
Wired TSN Bridge vs. 5G Virtual TSN Bridge

Wired TSN Bridge 5G Virtual TSN Bridge
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Delay data from measurements available here:
https://github.com/DETERMINISTIC6G/deterministic6g_data




8 DETERMINISTIC6G

How to Schedule with Large (Port-to-Port)

Packet Delay Variation (PDV)?

Scheduling-Friendly Data Plane:

Wireless-Friendly
End-to-End Scheduling

= Novel approaches to calculate
e2e schedules with large PDV:
= Guaranteed e2e reliability
= Efficient: high utilization,
number of streams

?

Discussed today!

= Correction within the 5G System
= Compresses PDV at the Cost of

Packet Delay Correction [2]

Increased Latency

probability
<
1
1
7

latency

2.1 “First report on 6G centric enablers”

[2] DETERMINISTIC6G Deli
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5G Systems as Logical TSN Bridges

Interface to TSN Controller }—\

Port-to-Port Delay Measurements B
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Challenge 1:

5G packet delay variation is three orders of magnitude larger
compared to wired networks!



End-to-End Reliability vs. 5G Reliability
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Challenge 2:

5G reliability does not suffice to ensure end-to-end reliability!



Deterministic6G Contributions

1. Provable End-to-End Reliability:
® FIPS bridges the gap between 5G and end-to-end reliability
® Epoch-based updates of 5G packet delay histograms

2. Graceful Degradation:
® Gracefully lower reliability or latency guarantees

® |nstead of having to drop streams entirely

3. Minimal Resource Over-Provisioning:
® Controlled frame interleaving

® Improves scalability by a factor of up to x76



Related Work

Scheduling in Wired Time-Sensitive Networks:!2
® Often assume (near-)deterministic models for TSN
~> time synchronization errors and sporadic frame loss
® Robustness is achieved with strict transmission isolation
~+ Does not scale for large 5G PDV!

F. Diirr and N. G. Nayak, “No-wait packet scheduling for IEEE time-sensitive networks
(TSN),” RTNS 2016

s, s. Craciunas, R. S. Oliver, M. Chmelik, and W. Steiner, “Scheduling real-time
communication in IEEE 802.1Qbv time sensitive networks,” RTNS 2016



Related Work

Scheduling in Wired Time-Sensitive Networks:
® Often assume (near-)deterministic models for TSN
~> time synchronization errors and sporadic frame loss

® Robustness is achieved with strict transmission isolation
~+ Does not scale for large 5G PDV!

Scheduling in Wireless Time-Sensitive Networks:*:
® Joint configuration of IEEE 802.1Qbv and 5G resource allocation
~ Worst-case or stationary 5G channel assumptions!

*J. Yang and G. Yu, “Traffic scheduling for 5G-TSN integrated systems,” ISWCS 2022
5D. Ginthor, R. Guillaume, J. von Hoyningen-Huene, M. Schiingel, and H. D. Schotten,

“End-to-end optimized joint scheduling of converged wireless and wired time-sensitive
networks,” ETFA 2020



Network Topology
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TSN Bridges: Port-to-Port Model

R @"'SGCL";'

ES 8 queues

5

IEEE 802.1Qbv Time-Aware Shaper (TAS)
~~ governs gates at each egress queue

IEEE 802.1Qci Per-Stream Filtering and Policing (PSFP)
~ specifies allowed frame arrival intervals at each bridge

4
PSFP




Robust Scheduling

Robustness can (informally) be achieved through
® the allocation of sufficiently large 5G packet delay budgets, and

® the isolation of transmission faults.

To compute provably robust TSN schedules, we introduce
e Zero Interleaving Packet Scheduling (ZIPS)
e Full Interleaving Packet Scheduling (FIPS)

Central Result



5G Packet Delay Budgets
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5G Packet Delay Budgets
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Zero Interleaving Packet Scheduling (ZIPS)
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Zero Interleaving Packet Scheduling (ZIPS)
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Zero Interleaving Packet Scheduling (ZIPS)

S([T1, B1])

S([T2, B1])

R(Bx1)

S([B1, B2)) rﬁ] lzfj

time[ms] 0 2 4 6 8 10 12 14

Stream Link Reliability d™"  d™a

fi [Ty, Bi] 33% 5ms 6ms
H [T2, Bi] 99% 4ms 10ms




Zero Interleaving Packet Scheduling (ZIPS)
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Zero Interleaving Packet Scheduling (ZIPS)
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Zero Interleaving Packet Scheduling (ZIPS)
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Full Interleaving Packet Scheduling (FIPS)

Controlled Frame Interleaving:

S —
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Timeline of 5G Histogram Updates
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For reference, we will later consider a lead time of
® Epoch 1: 5 minutes
® Epoch 7 (7 > 1): 5 seconds
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Overview of TSN-DGM

5G Packet Delay
Histograms
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TSN Conflguratlon
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Overview of TSN-DGM

TSN-DGM Transmission Graph
Compute 5G PDBs H { Update PDBs ]
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TSN Configuration
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Overview of TSN-DGM

5G Packet Delay
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Overview of TSN-DGM

TSN-DGM Transmission Graph
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Transmission Graphs
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Transition to the Next Epoch

Problem Without Adaptation:
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Transition to the Next Epoch

Updating the 5G Packet Delay Budgets:
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Step 1: Adapting the Transmission Graph
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Step 1: Adapting the Transmission Graph
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Step 2: Rescheduling & Graceful Degradation

TSN-DGM

Transmission Graph

Compute 5G PDBs

—~

Update PDBs ]

1

5G Packet Delay
Histograms

ZIPS Solver

‘ Intensification ‘ ‘ Diversification ‘

Compute Objective
Flip Operation

Shufﬂe Operatlon

i

FIPS Solver

‘ Compression ‘ ‘ Intensification ‘

TSN Conflguratlon

Graceful Degradation: If no optimal solution is found in time

~ iteratively shorten 5G PDBs until reaching zero tardiness
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Evaluation

Methodology:
N /7‘/13
e Real 5G PD histograms b

® 100 Mbps Ethernet links

B I
;"‘/\ ‘ ofica 1\ 7 :
! Ig/’ \v 5GL énd;‘;e / \\‘;/<g :
® Frames per 20 ms hypercycle: ‘ ‘
=
=

P —;@AJ?:/,,,,

R ) ‘ psTTe - v"';\l\:ITT\‘ . ;E !

60 wireless + 50 wired < [ B \/?/<E! |

. . - = ]
® Simulation: 100k hypercycles — . \@/15=i
TSN Backbone \E

type f.size f.period f.latency f jitter

wireless 100 20ms 20 ms 5ms
wired 100 4 ms 500 ps 0
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The Importance of Robust End-to-End Scheduling
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SR | Setting:
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Adaptation Strategy
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Adaptation Strategy
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The Price of End-to-End Reliability
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Simulation Framework Converged 6G/TSN networks

Existing simulation frameworks:
® Wired TSN networks:

® e.g. NeSTiNg from USTUTT and INET
= No 5G/6G features

® Wireless 5G/6G networks

® e.g. SimubG
= No TSN functionality

Problem: There is no existing simulation framework to simulate
converged 6G/TSN networks.

21



Simulation Framework Converged 6G/TSN networks

Goal: Evaluation platform for analysis of end-to-end
deterministic communication (TSN/DetNet) in converged 6G/TSN

networks.

Important aspect of 6G network: Port-to-port delay within wireless
TSN bridge

22



Simulation Framework Converged 6G/TSN networks

® Novel data-driven simulation approach:

® Integrating real 5G measurements into TSN simulator
® Only possibly through joint (contributions of various project partners)
® Validation at very early stage of 6G development possible

¢ Based OMNeT++/INET simulator (open-source release of

extensions)
® Most popular platform for TSN simulations

= Enables realistic quantitative validation of DETERMINISTIC6G
concepts.

23



Simulation Framework Converged 6G/TSN networks
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Simulation Result:
End-to-end delay
matches input distri-
bution

Simulation Input: Simulation:
Delay measurements | All TSN features of INET,
from real 5G systems® |e.g. TAS

5Available on GitHub:

https://github.com/DETERMINISTIC6G/deterministic6g_data 0


https://github.com/DETERMINISTIC6G/deterministic6g_data

Takeaway Points

Wireless-Friendly Scheduling in TSN:

® Achieves provable end-to-end reliability for each TSN stream

® Requires care to ensure both robustness and scalability
Transmission Graphs:

® Enable usage of fast Job-Shop Scheduling techniques

® Provide an efficient adaptation strategy with Graceful Degradation
Deterministic6G Simulation Framework:

® Data-driven simulation framework for converged 5G/TSN networks

® Publicly available on GitHub’

"https://github.com/DETERMINISTIC6G/deterministicég -


https://github.com/DETERMINISTIC6G/deterministic6g
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